

INFLUENCE OF POLYPHENOLS ON THE INTEGRATED POLYPHENOL-MAILLARD REACTION HUMIFICATION PATHWAY AS CATALYZED BY BIRNESSITE

A. G. Hardie,¹ J. J. Dynes,^{2,3} L. M. Kozak¹ and P. M. Huang^{1*}

¹Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada

² Environment Canada, 11 Innovation Place, Saskatoon, S7N 3H5, SK, Canada.

³ Department of Chemistry, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.

Received May 29, 2007; in final form October 28, 2007; Accepted November 15, 2007

SUPPLEMENTARY MATERIALS

Table S1 The pH, redox potential (pH + pE), Mn concentration and visible absorbances at 400 and 600 nm of the supernatants of the integrated reaction systems at the equimolar ratio of polyphenol to Maillard reagents incubated at 25° C or 45° C at the end of a 15-day period, both in the presence or absence of birnessite.

Reaction system	pН	pH + pE	Mn	Visible absorbance		
				$(mmol L^{-1})$	400 nm	600 nm
Presence of birnessite	Pyrogallol-Maillard 25°C	7.04	8.11	16.37	52.63	10.73
	Pyrogallol-Maillard 45°C	6.53	7.16	31.83	85.14	12.57
	Resorcinol-Maillard 25°C	8.35	10.62	114.49	170.28	18.93
	Resorcinol-Maillard 45°C	7.97	7.18	215.67	224.88	26.94
Absence of birnessite	Pyrogallol-Maillard 25°C	5.08	11.15	^a NA	11.60	0.40
	Pyrogallol-Maillard 45°C	4.81	10.21	NA	15.89	1.60
	Resorcinol-Maillard 25°C	6.45	12.43	NA	0.54	0.03
	Resorcinol-Maillard 45°C	6.23	8.60	NA	10.66	3.21

^aNot applicable

^{*} Corresponding author: Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada. Phone: +306-966-6838, fax: +306-966-6881, e-mail:

A. G. Hardie et al., Annals of Environmental Science / 2007, Vol 1, 91-110

Fig. S2 (a) and (b), Maillard Fig. S2 (c), (d) and (e),		Fig. S2 (f) , 0.05 mole		Fig. S3 (b), (c), (d) and (e), [†]			Fig. S3 (f), 0.05 mol		
reaction and pyrogallol-Maillard Pyrogal		rogallol-Maillard systems with		pyrogallol only system		cinol-Maillard systems with	resorcinol only system		
systems with 0.0025 mole		0.025, 0.05 and 0.10 mole				0.0025, 0.025, 0.05 and 0.10 mole			
pyrogallol		pyrogallol				resorcinol			
Wavenumber (cm ⁻¹)		Wavenumber (cm ⁻¹)		Wavenumber (cm ⁻¹)		Wavenumber (cm ⁻¹)		Wavenumber (cm ⁻¹)	
725	Carbonate C-O out of	1079-	Aliphatic C-O	860	Carbonate C-O stretch	725	Carbonate C-O out of plane	510,	Mn-O vibrations *
	plane bend (rhodochrosite)	1081	stretching		(rhodochrosite)		bend (rhodochrosite)	598	(manganite, hausmannite)
860	Carbonate C-O stretch	1315	C-O stretch and	1086	Carbonate C-O stretch	860	Carbonate C-O stretch	861,	Carbonate C-O
	(rhodochrosite)		bending of COOH		(rhodochrosite)		(rhodochrosite)	1079	stretch (rhodochrosite)
1077-	Carbonate C-O stretch	1397-	Asymmetrical COO ⁻	1315	C-O stretch and	1077-	Carbonate C-O stretch	1151	Mn-O vibrations
1079	(rhodochrosite)	1406	stretch, C-H		bending of COOH	1079	(rhodochrosite)		(manganite,
			deformation of CH ₂ &						hausmannite)
			CH_3 , OH deformation						
1400		1 400	of phenols	1 400		1 400		1 4 1 0	
1408	Asymmetric COO	1498-	NH ₃ symmetrical	1402	Asymmetric COO	1408	Asymmetrical COU stretch,	1410	Asymmetric COO
	of CH & CH OH	1300	C-C strateh		deformation of CH &		C-H deformation of $CH_2 \approx$		deformation of CH
	deformation of phenols		C-C suelch		CH ₂ OH deformation		phenols		$\& CH_2 OH$
	deformation of phenois				of phenols		phenois		deformation of
					or phonons				phenols
1445	Carbonate symmetric C-	1592	Symmetric COO ⁻	1463	Carbonate symmetric	1446	Carbonate symmetric C-O	1461	Carbonate symmetric
	O stretch (rhodochrosite),		stretch, N-H		C-O stretch		stretch (rhodochrosite),		C-O stretch
	assymetrical bending of		deformation + C=N		(rhodochrosite),		assymetrical bending of		(rhodochrosite),
	$CH_2 \& CH_3$		amide II band		Assymetrical bending		$CH_2 \& CH_3$		assymetrical bending
					of CH ₂ & CH ₃				of CH ₂ & CH ₃
1594	Symmetric COO ⁻ stretch,	3355-	OH stretch	1580	Symmetric COO	1594	Symmetric COO ⁻ stretch, N-	1613	C=C aromatic ring
	N-H deformation $+$ C=N	3358			stretch		H deformation $+ C = N$		stretch, symmetric
2260	amide II band			2250	Ollastasta	2255	amide II band	2052	COO stretch
3360	OH stretch			3338	OH stretch	3333	UH stretch	2052,	Ketone, aldenyde
								2710	OH stretch
								3310	off Stretch

Table S2 Assignments of FTIR absorption bands of the solid residues of the Maillard, integrated pyrogallol-Maillard and resorcinol-Maillard reaction, and pyrogallol and resorcinol only systems. Interpretation is based on previous works [1-3].

*Presence of trace amounts of birnessite; [†]Fig. S3 (a) Maillard reaction is the same as Fig. S2 (a)

A. G. Hardie et al., Annals of Environmental Science / 2007, Vol 1, 91-110

Fig. S4 (a) and S5 (a)		Fig. S4 (b) & (c), Pyrogallol-		Fig. S4 (d)		Fig. S5 (b) & (c)		Fig. S5 (d)		
Maillard reaction system		Maillard systems with 0.05 and		0.05 mole pyrogallol only		Resorcinol-Maillard systems with		0.05 mole resorcinol only system		
-		0.10 mole pyrogallol			system		0.05 and 0.10 mole resorcinol			
Wavenumber (cm ⁻¹)		Wavenumber (cm ⁻¹)		Wavenumber (cm ⁻¹)		Wavenumber (cm ⁻¹)		Wavenumber (cm ⁻¹)		
883	Out of plane aromatic C-H bend	1084	Aliphatic C-O stretching	1072	Aliphatic C-O stretching	843, 1081- 1107	Aliphatic C-O stretching	841, 963, 1149	Aliphatic C-O stretching	
1091	Aliphatic C-O stretching	1253	C-O stretch and bending of COOH, C-O stretch of phenols or aryl ethers	1252	C-O stretch and bending of COOH, C-O stretch of phenols or aryl ethers	1226	C-O stretch and bending of COOH, C-O stretch of phenols or aryl ethers	1295	C-O stretch and bending of COOH, C-O stretch of phenols or aryl ethers	
1218	C-O stretch and bending of COOH, C-O stretch of phenols or aryl ethers	1383	OH deformation and C-O stretch of phenols, C-H deformation of CH_2 & CH_3 , asymmetrical stretch of COO^-	1382	OH deformation and C-O stretch of phenols, C-H deformation of CH_2 & CH_3 , asymmetrical stretch of COO^-	1298	C-O stretch and bending of COOH, C-O stretch of phenols or aryl ethers	1358	OH deformation and C-O stretch of phenols, C-H deformation of $CH_2 \&$ CH_3 , asymmetrical stretch of COO ⁻	
1380	OH deformation and C-O stretch of phenols, C-H deformation of CH ₂ & CH ₃ , asymmetrical stretch of COO ⁻	1444 -1445	Assymetrical bending of CH ₂ & CH ₃ , C=C aromatic ring stretch	1427	Assymetrical bending of CH ₂ & CH ₃ deformation band, C=C aromatic ring stretch	1392- 1398	OH deformation and C- O stretch of phenols, C- H deformation of CH_2 & CH ₃ , asymmetrical stretch of COO ⁻	1461	Assymetrical bending of CH ₂ & CH ₃ , C=C aromatic ring stretch	
1580	Symmetric C-O stretch of COO ⁻ , N-H deformation + C=N amide II band	1510	Symmetric C-O stretch of COO ⁻ , N-H deformation + C=N amide II band	1511	Symmetric C-O stretch of COO ⁻	1460	Assymetrical bending of CH ₂ & CH ₃ , C=C aromatic ring stretch	1499	Symmetric C-O stretch of COO ⁻	
1621	Aromatic C=C ring stretch	1605- 1613	Aromatic C=C stretch, symmetric C-O stretch of COO ⁻ (shoulder)	1597	Aromatic C=C stretch, symmetric C-O stretch of COO ⁻ (shoulder)	1501	Symmetric C-O stretch of COO ⁻	1617	Aromatic C=C stretch	
1712	Symmetric C=O stretch of COOH	1715	Symmetric C=O stretch of COOH	1711	Symmetric C=O stretch of COOH	1617	Aromatic C=C ring stretch	1713	Symmetric C=O stretch of COOH	
2942	Aliphatic C-H stretch	2942	Aliphatic C-H stretch	3380	OH stretch	1713	Symmetric C=O stretch of COOH	3345	OH stretch	
3269 3406	OH or N-H stretch OH stretch	3380	OH stretch			2942 3349	Aliphatic C-H stretch OH stretch			

Table S3 Assignments of FTIR absorption bands of humic acids isolated from the supernatants of the Maillard, integrated pyrogallol-Maillard and resorcinol-Maillard, and pyrogallol- and resorcinol only systems. Interpretation is based on previous works [1-3].

Figure S1

X-ray diffractograms of unreacted biomolecules: (a) pyrogallol, (b) resorcinol, (c) glycine and (d) glucose. D-spacings are indicated in Å. The spectrum of the unreacted pyrogallol (Fig. S1a) shows the typical pyrogallol d-values at 12.3, 8.70 and 5.50 Å [4]. In addition, there was a crystalline product present which has been identified as poly[(phenyl-p-phenylene)-co-(terephthalate)-co-(p-hydroxy-benzoate)] with d-values of 12.3, 6.18, 4.10 and 3.08 Å [4], which was probably formed as a result of pyrogallol transformation in reaction to the heat of the X-rays. There was also visible evidence of this transformation, as the initially white pyrogallol crystals mounted on the glass slide turned light brown in the center area that was exposed to the X-ray beam. Resorcinol (Fig. S1 b), glycine (Fig. S1 c) and glucose (Fig. S1 d) show their respective typical d-values [4] and appeared not to be affected by the X-rays.

Figure S2 FTIR spectra of the solid residues formed in the presence of birnessite from (a) the Maillard reaction system; (b-e) the integrated pyrogallol-Maillard reaction systems with: (b) 2.5 mmole pyrogallol, (c) 25 mmole pyrogallol, (d) 50 mmole pyrogallol, (e) 100 mmole pyrogallol; and (f) the 50 mmole pyrogallol only system.

A. G. Hardie et al., Annals of Environmental Science / 2007, Vol 1, 91-110

Figure S3 FTIR spectra of the solid residues formed in the presence of birnessite from (a) the Maillard reaction system; (b-e) the integrated resorcinol-Maillard reaction systems with: (b) 2.5 mmole resorcinol, (c) 25 mmole resorcinol, (d) 50 mmole resorcinol, (e) 100 mmole resorcinol; and (f) the 50 mmole resorcinol only system.

Figure S4 FTIR spectra of the humic acids isolated from the supernatants of reaction systems catalyzed by birnessite: (a) the Maillard reaction; integrated pyrogallol-Maillard reaction systems with: (b) 50 mmole pyrogallol and (c) 100 mmole pyrogallol; and (d) 50 mmol pyrogallol only system.

A. G. Hardie et al., Annals of Environmental Science / 2007, Vol 1, 91-110

Figure S5 FTIR spectra of the humic acids isolated from the supernatants of reaction systems catalyzed by birnessite: (a) the Maillard reaction; integrated resorcinol-Maillard reaction systems with: (b) 50 mmole resorcinol and (c) 100 mmole resorcinol; and (d) 50 mmol resorcinol only system.

REFERENCES

- [1] Silverstein RM, Webster FX, Kiemle D. *Spectrometric identification of organic compounds*. 7th ed. New York: John Wiley & Sons, 2004.
- [2] Stevenson FJ. *Humus chemistry: Genesis, composition, reactions.* 2nd ed. New York: John Wiley & Sons, 1994.
- [3] van der Merel HW, Beutelspacher H. *Atlas of infrared spectroscopy of clay minerals and their admixtures*. Amsterdam: Elsevier, 1976.
- [4] International Centre for Diffraction Data. *Powder diffraction file: Organic and organometallic phases search manual for experimental patterns*. Newton Square: JCPDS - International Centre for Diffraction Data, 2006.

AES7529b

© Northeastern University, 2007